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Abstract. In this paper we show that there exists a family of supersonic neutral

modes for a compressible mixing layer in an unbounded domain. These modes have zero

wavenumber and frequency with non-zero phase speed. They are analogous to the super-

sonic neutral modes of the compressible vortex sheet found by Miles. The results

presented here give a more complete picture of the spectrum of the disturbances in this

flow.
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1. Introduction. In recent studies (Jackson and Grosch, 1989, 1990), we considered

the inviscid spatial stability problem for the compressible mixing layer in an unbounded

domain. The key to understanding the stability characteristics of this flow is the under-

standing of the different parameter regions for which various types of instability modes

can exist. In Figure 1 we show a plot of the sonic phase speeds c+ versus the Mach

number, where

1 _/_-_-T

c+=l M' c =13t/+ M

Here, M is the Mach number of the fast stream, 13u the ratio of the speed of the slow

stream to that of the fast stream, and _r the ratio of the temperature of the slow stream to

that of the fast stream. These curves divide the phase speed-Mach number plane into four

regions. If a disturbance exists with a Mach number and phase speed in region 1, the dis-

turbance is subsonic at both boundaries, and we classify it as a subsonic mode. In region

3, the disturbance is supersonic at both boundaries, and we classify it as supersonic-

supersonic mode. In region 2, the disturbance is subsonic in the fast stream and super-

sonic in the slow stream, and we classify it as a fast mode. Finally, in region 4, the dis-

turbance is supersonic in the fast stream and subsonic in the slow stream, and we classify

it as a slow mode. We found that there is only a single subsonic neutral mode for two

dimensional waves. Beyond a critical Mach number M s, the Mach number at which the

phase speed equals that of a sonic wave, the subsonic neutral modes are transformed into

supersonic neutral modes which are subsonic in one freestream and supersonic in the

other. In addition, another supersonic neutral mode appears at M, > M s, the Mach

number at which the sonic speeds of the fast and slow streams are equal. This supersonic

neutral mode has the opposite behavior than the previous. That is, if the continuation of

the subsonic neutral mode is supersonic in the fast stream and subsonic in the slow

stream, this new mode is subsonic in the fast stream and supersonic in the slow stream.

In these studies we did not find any neutral or unstable modes in region 3 which

were supersonic in both streams. In this paper we now show that there exists a family of

neutral modes in region 3 having zero wavenumber and frequency with non-zero phase

speed 1. The approach taken here follows that of Papageorgiou and Smith (1989) and

Papageorgiou (1990), who considered long waves in the wake behind a flat plate. We

show that these modes are analogous to the supersonic neutral modes of the compressible

vortex sheet found by Miles (1958). The results presented here give a more complete pic-

ture of the spectrum of the disturbances in a compressible mixing layer.

2. Formulation and Results. We consider here a compressible mixing layer in an

unbounded domain with mean velocity U(rl) and temperature T(rl), where 1'! is the simi-

larity variable in terms of the downstream distance and the Howarth-Dorodnitzyn variable.

With suitable normalization, U varies between 1 in the fast stream (rl = oo), and [_u < 1 in

This possibility was suggested to us by R. Klein.
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the slow stream01=-oo). The temperatureT varies between 1 in the fast stream and

13_-> 0 in the slow stream. The results presented here are independent of the detailed form

of U and T.

The mean flow is perturbed by introducing two-dimensional wave disturbances. The

disturbance equation for the normal velocity perturbation _p is given by (Lees and Lin,

1946)

[ ](v - c)(- v'_ - a2(u - c)¢ = o, (1)
G

where primes denote differentiation with respect to the similarity variable 11, and G is

given by

G =T[T-M 2(U-c)2]. (2)

Here, ot is the wavenumber of the disturbance in the downstream direction and c is the

corresponding phase speed.

Since we are interested in long wavelength perturbations (or--_ 0), the appropriate

expansions are found to be

I_ = _0 + 0t_)l + 0_2¢2 + " " " (3)

c =c o+otc 1+0_2c2+ "'" (4)

1 1

G Go
+ OtGl + ot2G2 +

where

G O = T [T - M2(U - c0)2],

(5)

(6)

G I=-2clM2G_ 2(U -co)T. (7)

Let us now define the linear operator L :

L_F) = (U - Co)W'- U'W =- (U - Co) 2 (8)

Substituting the above expansions into (1) gives the following three leading-order prob-

lems:
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d (G6_l L(O0)) = 0,
dR

(9)

• d

d (G_d [L(¢l) _ c1¢0]) + .____ (G1L(¢o)) = 0,dR
(10)

d

dR
_(G_ "1 [L (¢2) - c2¢ 0 - c1¢1] ) + (G1 [L(01) - c1¢0] )

U|l

+ d (G2L(¢o))-(U-co)¢o =0"
a J!

(11)

The appropriate solution to (9) that is bounded for large 1"1is given by

¢o = Ao(U - Co), (12)

where A o is a constant. Based on this solution the following three remarks can be made:

[11 Since solutions in region 2 of Figure 1 are subsonic in the fast stream and

supersonic in the slow stream, we see that _0 is a solution if we take the

leading-order wave speed to be

c o = 1. (13)

f2| Since solutions in region 4 of

supersonic in the fast stream,

leading-order wave speed to be

Figure I are subsonic in the slow stream and

we see that ¢_0 is a solution if we take the

Co = _u. (14)

[3] Since solutions in region 3 of

slow streams, we see that ¢0

wave speed lying in the range

Figure 1 are supersonic in both the fast and

is a possible solution for some leading-order

c_ < Co < c+, (15)

where c+ are the phase speeds of the sonic neutral modes. Thus, the actual

value of c o is not determined at this order, and can only be found by using

the higher orders terms in the a expansion.

To determine the leading-order wave speed c o for region 3, we consider the expansions at

the higher orders. The solutions to (10) and (11) are given by

Ol=_ClAo+Al(U_co)I Go
(U - Co) 2 dR,

(16)
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(_2 = -C2Ao + C l (U - Co) f ¢1
(U - Co) 2 drl

_al(U_co)_ G2GI
(U - Co) 2 d'q + A2(U - Co) _

Go
d

(U - Co) 2
lq

Go [ f(U-co)2ds ] d1]. (17)
+ A°(U - Co)f (V -_ Co) 2

We note here that both (_l and 42 could contain another term that is proportional to %,

which can be ignored by a suitable renormalization of A 0.

Inspection suggests that the solution diverges as 1"1----)+o,,. Thus, these expansions

will break down when Ill ] = O ((x-l). There are tWO outer regions, one in the fast stream

and one in the slow stream, which will be considered separately, For the outer region in

the fast stream, the appropriate scalings are

for the independent variable, and

1] = O_-1 Z (18)

@F =20+0t21+ ''" (19)

for the dependent variable. Substituting (18) and (19) into our original equation (1) yields,

to leading order, the equation

2o + Gd So =0 , G d =M2(1-Co) 2 1 (20)

The solution for outgoing waves is found to be

2o = Bo e-i _ z (21)

The next order equation is given by

+GJ =g 2o, gi _ =2ctM2(1-Co) , (22)

whose solution for outgoing waves is

g{Bo
21 B1 e-i G4-ff-_z + i= __ z e (23)

24G_

Expanding the solution as z _ 0, and matching with the inner solution (3) as rl --_ ,_,

yields the following relationships
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B o = Ao(1 - Co) ,

B 1 =-ClAo,

A l = i Ao(1 - CO)2(G_) -1/2,

A2=i
1 -c o

(G$ )3a
c 1 (2 - M2(1 - Co)2)Ao .

For the outer region in the slow stream, the appropriate scalings are

*s = + + ...,

and z is defined as before.

order, the equation

^ tl

¢0 + Gff _0 = 0, G0- = _T [M2(_U - c0) 2 _f]"

The solution for outgoing waves is found to be

-i G'_-z
_0 = Doe

The next order equation is given by

_i'+ G_- _1 = gi- _0,

whose solution for outgoing waves is

-/G_-_'z
_1 =Die

(24)

(25)

(26)

(27)

(28)

Substituting into our original equation (1) yields, to leading

(29)

(30)

gf = 2ClM215T (_U - Co), (31)

• g{Do -i C'_-_z
+l ze

2,g-do
(32)

Expanding the solution as z --_ 0, and matching with the inner solution (3) as 1"! --¢ -o_,

yields the following relationships

D O = AO(_U - Co) , (33)

D 1 =-ClAo, (34)

A 1 = i Ao(_v - c0)2(G_) -1/2, (35)
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13u -- C o

A2= i -_)_-_ _I, c1(2[5r - M2(_U - CO)2)Ao .
(36)

The two conditions (26) and (35) on A t yields the following eigenvalue equation for

CO:

_-,r [M2([iU - c0) 2 - _T ] (1 -- C0) 4 = [M 2 (1 - c0) 2 - 1 ] (_U - Co) 4" (37)

This equation is identical to (5.3a) of Miles (1958) if we re-express his result in our nota-

tion. Miles showed (in our notation), that for region 3:

[1] A single root of (37) exists for

I+V 
M > M, = , (38)

1-13u

with phase speed

Pu+
Co - , (39)

I+V 

which we classify as a constant speed supersonic-supersonic neutral mode.

Note that this solution is independent of Mach number, and corresponds to the

phase speed at which the two sonic speeds c± are equal.

[2] A double root first appears at

(1 + 13./Y3)3/2

M = 1 - 13u (40)

with phase speed

13u + 13,_/3
Co - (41)

1 + [3}rj

[3] There are three distinct real roots for

(1 -t- 1_/1/3)3/2
M>

1- Ih,
(42)

One of the roots is given by (39), while the other two roots must be found

numerically. For the special case of _y. = 1, these roots are given by
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l+_u ::1:: 1 I ] 1/2Co - 2 _ M2(1 - 13U)2 + 4 - 4N]M2(1 - _u) 2 + 1 . (43)

The root which corresponds to the (+) sign we classify as a fast supersonic-

supersonic neutral mode, while that which corresponds to the (-) sign we clas-

sify as a slow supersonic-supersonic neutral mode.

In Figure 2 we display the real roots of (37) which lie in region 3 for 13U = 0 and

various values of [_r- The roots are the neutral phase speeds. For completeness, we also

display the neutral phase speeds which lie in the other regions (Jackson and Grosch,

1989). The classification scheme is given in the figure caption.

The two conditions (27) and (36) on A2 yield the result that c 1 = 0. Thus, we have

A 2 = B 1 = D 1 = 0, and the final solution in region 3 is now given by

t_ = Ao(U - Co)
(1 - c0) 2 G O

l+iot ___ I (U _ co)2 drl +

o0 [ i(U_co)2ds } an+ .a2J"(v - 2
(44)

3. Conclusions. We have shown that the compressible mixing layer has a family of

supersonic neutral modes in region 3 of Figure 1, which have phase speeds which are

identical to those of the compressible vortex sheet (Miles, 1958). For the mixing layer the

wavenumbers of these modes are zero, while those of the vortex sheet are arbitrary. One

might expect this since the vortex sheet has no natural length scale, while the mixing layer

has a non-zero thickness. We note that these results can be extended to three dimensional

disturbances by rescaling the Mach number by cos 0, where 0 is the angle of propagation.

Finally, Artola and Majda (1987, 1989) showed that the nonlinear interaction of the three

supersonic neutral modes of the compressible vortex sheet can lead to instabilities of the

flow. We surmise that similar behavior might be exhibited by the interaction of the

supersonic-supersonic neutral modes presented in this paper. We are currently investigat-

ing this numerically.

Acknowledgements. The authors are indebted to R. Klein for suggesting that a

supersonic-supersonic neutral mode might exist in the mixing layer.
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Figure 1. Plots of the sonic speeds c+ versus Mach number showing the four regions

in which different types of disturbances can exist.
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Figure 2. Plot of the neutral phase speeds as a function of Mach number for 13v = 0

and (a) Dr = 2, (b) 13w = 1, and (c) [3I, = 0.5. The neutral mode classification is: (1)

subsonic, (2) fast (supersonic), (3) slow (supersonic), (4) cN = 1, (5) CN = 0, (6) con-

stant speed supersonic-supersonic, (7) fast supersonic-supersonic, and (8) slow

supersonic-supersonic. The sonic curves are shown as dashed.
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